
ARTICLE OPEN

Unsupervised discovery of thin-film photovoltaic materials
from unlabeled data
Zhilong Wang 1,2, Junfei Cai1,2, Qingxun Wang1,2, SiCheng Wu1,2 and Jinjin Li 1✉

Quaternary chalcogenide semiconductors (I2-II-IV-X4) are key materials for thin-film photovoltaics (PVs) to alleviate the energy crisis.
Scaling up of PVs requires the discovery of I2-II-IV-X4 with good photoelectric properties; however, the structure search space is
significantly large to explore exhaustively. The scarcity of available data impedes even many machine learning (ML) methods. Here,
we employ the unsupervised learning (UL) method to discover I2-II-IV-X4 that alleviates the challenge of data scarcity. We screen all
the I2-II-IV-X4 from the periodic table as the initial data and finally select eight candidates through UL. As predicted by ab initio
calculations, they exhibit good optical conversion efficiency, strong optical responses, and good thermal stabilities at room
temperatures. This typical case demonstrates the potential of UL in material discovery, which overcomes the limitation of data
scarcity, and shortens the computational screening cycle of I2-II-IV-X4 by ~12.1 years, providing a research avenue for rapid material
discovery.
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INTRODUCTION
Solar energy is the most important basic energy among all types
of renewable energy1,2. The technologies that convert solar
energy to electrical power (such as photovoltaic (PV) generation
and photoelectrochemical generation, will receive more attention
in multi-functional clean energy sources3–5. Practical thin-film PV
cells are based on quaternary chalcogenides (I2-II-IV-X4) of
sphalerite crystals such as CdTe and Cu(In, Ga)(S, Se)2 (CIGSSe),
which is cheaper to process and exhibit competitive performance
levels compared to conventional crystal silicon-based PVs. Their
battery power conversion efficiency (PCE) exceeds 20% at
present6,7. However, these materials require expensive or rare
elements (In, Te), or even toxic (Cd), severely limiting their large-
scale development. Kesterite Cu2ZnSn(S, Se)4 (CZTSSe), is a
potential thin-film PV material, in which the In and Ga in CIGSSe
are replaced with Zn and Sn, and its record PCE of 12.6% is
significantly lower than that of CdTe/CIGSSe8. One possible reason
for this is the antisite disorder in the kesterite structure, which
significantly affects the open-circuit voltage and device perfor-
mance. CZTSSe, where the smaller Zn of is replaced by Ba with a
larger ionic radius (Cu2BaSnS4-xSex(CBTSSe)) to ease the antisite
disorder, has demonstrated better performance in PV in compar-
ison with CZTSSe9–12. Continuing this process, replacing Cu with
Ag in CBTSSe to form Ag2BaSnSe4 (ABTSe), and replacing Ba with
Sr to form Cu2SrSnSe4 (CSTSSe), yields materials that have recently
shown great promise with respect to thin-film PV applications13,14.
These cases enlighten us that it is worth exploring the wider

space of I2-II-IV-X4 chalcogenide semiconductors (where I-, II-, and
IV-sites are occupied by the different oxidation states of the
cations and X-site is a chalcogenide anion)15–17, to identify earth-
abundant, environmentally friendly thin-film PV materials inspired
by existing compounds. A possible path toward the discovery of
I2-II-IV-X4 materials is to synthesize or theoretically calculate the
properties of massive sets of potential structures in terms of
element substitution (e.g., I= Li+, Cu+, or Ag+; II= Ba2+ or Sr2+;
IV= Sn4+ or Ge4+; X=O2−, S2−, or Se2−), and then screen for

materials with good electro-optical properties. For example,
semiconductors with band gaps (Eg) (particularly with direct
band gaps) in the visible wavelength region (0.9–1.6 eV, the range
of optimum optical conversion efficiency), and strong optical
responses in the visible spectrum, are considered promising thin-
film PVs18,19. Unfortunately, such an approach is impractical
because of the high costs and long cycles of the necessary
experimentation and is also not amenable to high-throughput
computing due to excessive computational costs. Finding a way
to quickly discover I2-II-IV-X4 chalcogenide semiconductors is an
important challenge for current research, which is of great
significance for identifying thin-film PVs and further
improving PCE.
With the rise of machine learning (ML) applications, data-driven

approaches to material design and selection have promoted the
development of materials science. ML methods extend far beyond
the limitations of other current electronic structure analysis
methods, to investigate novel, emergent phenomena originating
from the complexity of the physical systems20–23. ML technologies,
such as deep neural networks (DNNs)24,25, support vector
machines (SVMs)26,27, and random forest (RF)28,29 algorithms,
have made remarkable achievements in materials science. Ding
et al. used over 104 catalytic samples to design non-noble metal
electrocatalytic proton exchange membrane fuel cells30. Based on
the ML model, Ali et al. achieved fast recovery of the cubic
structure in mixed cation perovskite thin films from high-
throughput calculation database31. Moreover, there are some
remarkable reports on the application of ML methods in PV
materials23,32–34. However, the applications of ML in these systems
use supervised learning, the biggest imperfection of which is that
it still requires an adequate data set to ensure the accuracy of
predictions. According to our current knowledge base, the data
set of I2-II-IV-X4 chalcogenides is still quite scarce, and existing
supervised learning models are unable to predict properties based
on structures, and a relevant ML model has not been reported
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with such a small data set. Consequently, a more sensible strategy
to overcome the limited data available is urgently needed.
In this study, we proposed an unsupervised learning (UL) model

with unlabeled data and apply it to a representative case of
exploring the I2-II-IV-X4 chalcogenides for thin-film PV materials.
Based on the structure of I2-II-IV-X4 chalcogenides and recombina-
tion of elements from the periodic table, a total of 2700 structures
(containing 27 identified materials) with four different space
groups were selected as the initial data set, and 1520 candidates
were screened out based on the tolerance factor. We used an
agglomerative hierarchical clustering (AHC) algorithm35 to accom-
plish UL, and proposed a descriptor representing the sums and
differences of elemental properties to cluster I2-II-IV-X4 chalco-
genides. Our unsupervised model clusters I2-II-IV-X4 chalcogenides
into one group with suitable Eg, while the other groups of
materials had larger Eg values. Based on the high-precision
Heyd–Scuseria–Ernzerhof calculations (HSE06) method, we quan-
titatively calculated the Eg and optical absorption coefficient36,37

of the selected compounds, and successfully discovered eight I2-II-
IV-X4 chalcogenides with good electro-optical properties (Ag2Ba-
TiS4, Ag2BaTiSe4, Ag2BaCrS4, Ag2BaSiSe4, Ag2BaZrS4, Ag2BaZrSe4,
Ag2BaHfSe4, and Cu2BaMnSe4). We further demonstrated that
these chalcogenides have good thermal stabilities at room
temperature using ab initio molecular dynamic (AIMD)

simulations. The proposed AHC-UL model bypasses the challenge
of data scarcity in traditional ML methods and effectively avoids
extremely long computational and experimental cycles. Based on
the recombination of all elements in the periodic table, the
proposed model reduces the screening period of I2-II-IV-X4
chalcogenides by ~12.1 years. We hope that the eight I2-II-IV-X4
chalcogenides proposed from 2700 unknown compounds will be
served as promising thin-film PVs to significantly improve PCE.

RESULTS
Workflow of material discovery
The workflow for unsupervised discovery of I2-II-IV-X4 chalcogen-
ides for thin-film PVs is illustrated in Fig. 1, including four modules:
determination of crystal structures (Fig. 1a–d)38, element selection
from the periodic table (Fig. 1e), the establishment of the ML
model (Fig. 1f), and ab initio calculation (Fig. 1g). In this procedure,
considering that the I2-II-IV-X4 chalcogenide has four different
space groups, I222, P31, Ama2, and I42m, we selected one
structure from each space group as initial structures, as shown in
Fig. 1a (see elemental sites and structures in Supplementary Fig.
1). Then, the proper site elements were selected according to the
oxidation state and coordination number from the periodic table,
where I= Li+, Na+, K+, Cu+, or Ag+; II= Ca2+, Sr2+, Ba2+, Eu2+, or
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Fig. 1 Schematic of the unsupervised discovery of I2-II-IV-X4 chalcogenides. a Crystallographic view of Ag2BaSnSe4 (I222).
b Crystallographic view of Cu2BaSnS4 (P31). c Crystallographic view of Cu2BaSnSe4 (Ama2). d Crystallographic view of Ag2BaGeS4 (I42m).
e Element selection of I (yellow), II (green), IV (purple), and X (light red) from the periodic table. f Workflow of an unsupervised guided
discovery of candidate I2-II-IV-X4 chalcogenides. g Further accurate verification of the I2-II-IV-X4 chalcogenides through ab initio calculations.
The gray arrows represent the sequential workflow.
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Pb2+; IV= Ti4+, Zr4+, Hf4+, Cr4+, Mn4+, Co4+, Si4+, Ge4+, or Sn4+;
X=O2−, S2−, or Se2−, as shown in Fig. 1e. Thus, 2700 different
structures (675 compounds without considering four space
groups) were generated as the initial data set for the ML module.
We used the tolerance factor (Tf), to make preliminary judgments
regarding the structural stabilities16, leaving 1520 I2-II-IV-X4
chalcogenides to be further studied (380 compounds without
considering space groups). Next, strong relationships between
compounds were established by feature engineering, and the
380 structures were clustered based on the AHC-UL algorithm.
Finally, 26 candidates covering two space groups (I222 and P31)
were selected from one of the ten groups, corresponding to Fig.
1f. As shown in Fig. 1g, ab initio calculations were performed to
predict the electro-optical properties and evaluate the thermal
stabilities of the 26 candidates, and eight I2-II-IV-X4 chalcogenides
were identified as promising thin-film PV materials. The step-by-
step screening process is discussed in Supplementary Fig. 2 and
Supplementary Note 1.

Unsupervised learning of I2-II-IV-X4 chalcogenides
The process used here for UL is shown in Fig. 1f, consisting of
three parts: data set, feature engineering, and algorithm39,40. First,
there are five, five, nine, and three elements to choose for the I-, II-,
IV-, and X-sites, respectively, which can form 675 different

compounds, and 2700 different structures with four space groups.
Then, Tf (TI and TIV) were applied to make a preliminary judgment
about the structural stabilities of these compounds. As shown in
Fig. 2a, the Tf plot of 675 compounds distinguished by X-site is
presented, where 380 compounds with 0.94 < TI < 1.22 and 0.84 <
TIV < 1.11 (cyan area in Fig. 2a, see Supplementary Fig. 3) are
potentially stable (see more details of Tf in Methods). Thus, a data
set of 380 I2-II-IV-X4 compounds without considering space groups
were selected for the next UL clustering.
Feature engineering, which can transform raw random data into

model training data to be closely related to the output attributes,
and determines the upper limit of the ML model. The goal of this
work is to determine I2-II-IV-X4 chalcogenides with good electro-
optical properties. The band gap Eg is a basic parameter of
electronic properties, which needs to be considered first. There-
fore, we need to build a feature set to create a strong relationship
between the compounds and electronic properties. The factors
affecting the Eg are complex, but to train the model, the feature
set must be limited. From previous works21,41–43, we found that
the elemental properties of materials have good mapping
relationships with their band gaps. Therefore, nine elemental
properties were selected, including the atomic number (Z), group
number (g), covalent radius (Rcov), and first ionization energy (Eie).
The list of all elemental properties is provided in Supplementary
Table 2. To construct the feature vectors, we proposed a
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Fig. 2 Unsupervised learning of I2-II-IV-X4 semiconductors. a Plot of tolerance factors (TI and TIV) of 675 I2-II-IV-X4 compounds, where 380
likely stable compounds are in the cyan area. b Computed features of six selected compounds based on SDEPs, dotted boxes show significant
differences in features. c Bottom-up tree diagram (dendrogram) generated by the agglomerative hierarchical clustering (AHC) method. The
dashed line shows the position where all compounds are partitioned into ten groups, marked as G1–G10 from left to right and distinguished
by different colors. d Mapping the dendrogram to the band gaps, revealing the grouping of 27 known I2-II-IV-X4 semiconductors
(Supplementary Table 1). The color bar shows the scale of band gap.
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descriptor using the sums and differences of elemental properties
(SDEPs for short) for I2-II-IV-X4 compounds, and constructed a 72-
dimensional SDEP in this way for each I2-II-IV-X4 compound (see
Methods and Supplementary Fig. 4). The feature plots of the six
selected compounds (Cu2EuSiS4, Li2BaGeS4, Ag2BaGeS4,
Cu2BaSnSe4, Cu2BaSnS4, and Ag2BaSnSe4) are shown in Fig. 2b.
As the input of clustering, these feature curves look very similar
and play an important role in clustering results. From Fig. 2b, the
feature curves of the selected six structures are very similar, but
there are still significant differences (see dotted boxes), such as
the tenth and 20th features, which are also the key to clustering.
Based on SDEPs, the AHC-UL algorithm35,44 was used to cluster

the 380 I2-II-IV-X4 compounds. The bottom-up tree diagram
(dendrogram) generated by the AHC is presented in Fig. 2c,
where an appropriate partition line is selected and the 380
compounds are classified into ten groups (from G1, G2, …, to G10).
The different colors in Fig. 2c correspond to different groups. More
details about the position of the partition line are discussed in
Supplementary Note 2 and Supplementary Fig. 5. The grouping
shows a good quality of clustering as different groups are well
differentiated, and the SDEPs share similar characteristics within
the same groups (Supplementary Fig. 4). Details of the 72-
dimensional feature vector for each compound are provided in
Supplementary Table 3. Therefore, a visible clustering of I2-II-IV-X4
compounds can be found using AHC. From Fig. 2c, d, most of the

known I2-II-IV-X4 compounds with Eg < 2.0 eV are clustered into G3

in the dendrogram (Fig. 2d), including ten structures of
Ag2BaGeSe4 (Eg= 0.85 eV), ABTSe (Eg= 1.42 eV), Cu2BaGeSe4
(Eg= 1.88 eV), and CBTSSe (Eg= 1.96 eV), etc. In addition, G1,
including Li2BaGeSe4 (Eg= 2.4 eV) and Li2BaSnS4 (Eg= 3.07 eV),
are all known compounds with Eg > 2.0 eV. For G5 and G8, each
contains only one known compound with Eg > 2.0 eV, Li2EuGeSe4
(Eg= 2.54 eV), and Li2PbGeS4 (Eg= 2.41 eV), respectively. Thus, as
confirmed by the above correlations between the groups and
band gaps, our proposed SDEPs and UL model can capture the
chemical and physical relations of the electronic properties of I2-II-
IV-X4 chalcogenides. Besides, we also performed the K-means
method to cluster I2-II-IV-X4 compounds, the comparison of AHC
and K-means are provided in Supplementary Fig. 6, Supplemen-
tary Table 4, and Supplementary Note 3.

Physical insights from unsupervised learning
The clustering of I2-II-IV-X4 chalcogenides by SDEPs provides
physical insights into the understanding of compounds exhibiting
useful stabilities, proper electronic properties, and suitable crystal
structures. We counted the number of compounds in each group,
including both unknown compounds and 27 known compounds
(Fig. 3a). G1 and G10 had the most compounds at 52 each, while G2

and G6 contained the fewest compounds at 16 each, indicating
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that a targeted study of these groups would significantly narrow
down the initial scope, which contained 380 compounds with four
space groups. In addition, we generalize and summarize the ratios
of known compounds in these groups (Fig. 3a and Supplementary
Table 4). Remarkably, G3 contains 36 compounds (Supplementary
Table 4), of which ten are known compounds, accounting for
27.8%, which is much higher than the ratios of known compounds
in other groups. In terms of stability, the structures in G3 are likely
to be more stable, as the 27 known compounds have been
experimentally synthesized. This is an obvious implication that the
unknown 26 compounds in G3 deserve further targeted study.
As shown in Fig. 3b, the violin plot of the ten known

compounds in G3 showed a significantly lower Eg, with an average
of 1.75 eV and a median of 1.80 eV, and the majority of the 17
known compounds outside of G3 have significantly higher Eg, with
an average of 2.27 eV and a median of 2.18 eV. This shows great
potential for the discovery of I2-II-IV-X4 compounds with lower Eg
among the 26 unknown compounds in G3 with good electro-
optical properties. Moreover, from Supplementary Table 5 and
Supplementary Fig. 7, we found that the 36 compounds in G3

showed the same I-site of Ag+ or Cu+, II-site of Ba2+, and X-site
of S2− or Se2−, revealing the dependence of their stabilities and
electronic properties on their elemental properties. T hese
discoveries from UL have important guiding significance for the
design of I2-II-IV-X4 compounds with stable and good electronic
properties.
In addition to the discovery of elemental and electronic

properties, we also found patterns in the crystal structures of
the four space groups. The crystal structures of five known
compounds with I= Ag+ and II= Ba2+ are shown in Fig. 3c. These
structures contain two kinds of similar space groups: I42m (40%)
and I222 (60%), where the I-X4 tetrahedra are flattened and share
edges with the II-X8 dodecahedra, do not bear any resemblance to
the square antiprisms observed in the P31 and Ama2 structures
(Fig. 1a and Supplementary Fig. 1). In Fig. 3d, where the other five
known compounds with I= Cu+ and II= Ba2+ are presented, they

happen to contain two other types of space groups, Ama2 (20%)
and P31 (80%). These phenomena indicate that the ions at the
I-site have an effect on the crystal structures, and the stable
structures can be hopefully obtained when different chemical
formulas are combined with suitable space groups (e.g., when I=
Ag+, the space group of I222 is better, while for I= Cu+, the space
group of P31 is better). To further study the 26 unknown
compounds in G3 and narrow down the screening, we focused
on two main space groups; when Ag+ is at the I-site, we selected
I222, while when Cu+ is at the I-site, we selected P31. As a result,
the scope of exploration narrowed from 1520 structures to
26 structures (see the list in Supplementary Table 5).
From Supplementary Fig. 4, the dashed boxes show the

significant different features in G3, which are 10th, 19th, 56th
features, indicating that the difference of dipole polarizability
between I, II, and IV-site elements and the difference of atomic
number between I, or II, or IV and X-site elements are important to
electronic property of the I2-II-IV-X4 compounds (Supplementary
Table 3). In addition to speeding up the screening process, UL can
estimate important features for guiding the designing of high-
performance I2-II-IV-X4 compounds. Therefore, the supervised
learning method may be further developed to accurately analyze
the importance of features.

Electro-optical properties of eight I2-II-IV-X4 chalcogenides
We performed ab initio calculations to predict the electro-optical
properties of the 26 I2-II-IV-X4 structures in G3. First, geometric
structure optimizations were performed, and the crystal structures
remained in good geometric arrangements. To achieve high
precision prediction, we used the high-level HSE06 calculation,
which is considered to be close to the experimental results37,45–48,
to calculate the electronic and optical properties of the screened
26 candidates. From Table 1 and Fig. 4, 20 structures were
determined to be semiconductors (Eg > 0), with direct (D) or
indirect (I) band gaps. The band structures and density of states

Table 1. Ab initio calculations for 20 semiconductors from G3.

Compound Space group Lattice constant (Å) Lattice angle (°) Volume (Å3) Eg (eV)

Ag2BaTiS4 I222 a= 6.50, b= 7.46, c= 8.28 α= β= γ= 90 395.75 D1.42

Ag2BaTiSe4 I222 a= 6.77, b= 7.74, c= 8.54 α= β= γ= 90 447.37 D1.18

Ag2BaCrS4 I222 a= 6.54, b= 7.18, c= 8.16 α= β= γ= 90 383.74 I0.70

Ag2BaZrS4 I222 a= 6.59, b= 7.49, c= 8.41 α= β= γ= 90 415.37 I1.93

Ag2BaZrSe4 I222 a= 6.83, b= 7.86, c= 8.70 α= β= γ= 90 466.91 I1.60

Ag2BaHfS4 I222 a= 6.58, b= 7.49, c= 8.40 α= β= γ= 90 414.09 D2.13

Ag2BaHfSe4 I222 a= 6.82, b= 7.89, c= 8.67 α= β= γ= 90 466.67 D1.76

Ag2BaSiSe4 I222 a= 7.02, b= 7.44, c= 8.36 α= β= γ= 90 436.22 D1.33

Cu2BaTiS4 P31 a= b= 6.29, c= 15.73 α= β= 90, γ= 120 538.00 I2.27

Cu2BaTiSe4 P31 a= b= 6.58, c= 16.48 α= β= 90, γ= 120 619.00 I2.02

Cu2BaCrS4 P31 a= b= 6.21, c= 15.32 α= β= 90, γ= 120 511.18 I2.24

Cu2BaCrSe4 P31 a= b= 6.49, c= 16.17 α= β= 90, γ= 120 590.19 I2.30

Cu2BaMnS4 P31 a= b= 6.18, c= 15.29 α= β= 90, γ= 120 505.29 I2.09

Cu2BaMnSe4 P31 a= b= 6.48, c= 15.99 α= β= 90, γ= 120 580.86 I0.87

Cu2BaZrS4 P31 a= b= 6.39, c= 16.00 α= β= 90, γ= 120 565.61 I2.69

Cu2BaZrSe4 P31 a= b= 6.67, c= 16.83 α= β= 90, γ= 120 648.93 I2.40

Cu2BaCoS4 P31 a= b= 6.21, c= 15.00 α= β= 90, γ= 120 500.60 I2.54

Cu2BaHfS4 P31 a= b= 6.36, c= 16.09 α= β= 90, γ= 120 563.16 I3.01

Cu2BaHfSe4 P31 a= b= 6.67, c= 16.82 α= β= 90, γ= 120 647.77 I2.73

Cu2BaSiS4 P31 a= b= 6.20, c= 15.46 α= β= 90, γ= 120 515.16 I3.19

Optimized lattice constants, lattice angles, volumes, and band gaps are presented.
D the direct band gap, I the indirect band gap.
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(DOSs) of 20 structures are shown in Fig. 5 and Supplementary
Figs. 8–23. From the predicted band structures, 15 structures have
indirect band gaps, most of which come are the structures with
I= Cu+. The other five structures have direct band gaps, all from
the structures with I= Ag+ (1.42 eV for Ag2BaTiS4, 1.18 eV for
Ag2BaTiSe4, 2.13 eV for Ag2BaHfS4, 1.76 eV for Ag2BaHfSe4, and
1.33 eV for Ag2BaSiSe4).
The edges of the conduction band minimums (CBMs) and

valence band maximums (VBMs) of 20 semiconductors are shown
in Fig. 4. We found that when I= Ag+, CBMs and VBMs tend to be
symmetric and have smaller Eg, which may lead to more
information for applications such as photocatalysis and bipolar
tubes, in addition to thin-film PVs. When I= Cu+, most CBMs and
VBMs are asymmetric, and CBMs are generally farther from Fermi
level than VBMs. For IV-site, taking Ti, Zr, and Hf as an example, we
found that with the increase of atomic number, the positions of
the CBMs and VBMs deviate from the Fermi level, leading to the
wider band gaps. The corresponding DOSs are also presented in
Fig. 5 and Supplementary Figs. 8–23, where CBMs are dominated
by I- and X-site atoms, while VBMs are mainly influenced by IV-site
atoms. All the CBMs and VBMs show that II-site atoms (Ba2+) do
not dominate the scene, which is consistent with the fact that II-
site atoms are indistinctive in the 26 unknown structures (which
are all Ba2+) from G3. The above results indicate the importance of
elements in regulating CBMs and VBMs to impact the Eg of I2-II-IV-
X4 structures, and UL can effectively cluster similar elemental and
conductivity characteristics into one group.
It is worth noting that there are four structures (1.42 eV for

Ag2BaTiS4, 1.18 eV for Ag2BaTiSe4, 1.33 eV for Ag2BaSiSe4, and
1.60 eV for Ag2BaZrSe4, as shown in Fig. 4) having Eg between 0.9
and 1.6 eV, which is the range of optimal optical conversion
efficiency18. In particular, Ag2BaTiS4, Ag2BaTiSe4, and Ag2BaSiSe4
have direct Eg, this means that the electron transitions do not
require phonon release or absorption; As a result, electrons and
holes are more likely to recombine. They may be used as potential
thin-film PVs. Moreover, Ag2BaCrS4, Ag2BaZrS4, Ag2BaHfSe4, and
Cu2BaMnSe4 have band gaps around 0.9 or 1.6 eV, are also likely to
have high optical conversion efficiency, we also took them into
account. Since PV suitability is the primary motivation for
examining these properties, more analysis of the optical proper-
ties of these eight structures is necessary. The calculated
absorption coefficients (α) of these eight structures based on
the HSE06 functional are presented in Fig. 6 and Supplementary
Fig. 24. They all show strong optical responses (α > 105 cm−1) in
the visible spectrum (1.65–3.26 eV, the colorful background in Fig.
6), and the absorption coefficients are largely isotropic in this
range, showing only minor variations among || a, || b, and || c

directions, potentially indicating that there is only a small
performance dependence on film orientation for thin-film PVs.
The optimal band gaps and desired optical absorptions of the
eight I2-II-IV-X4 chalcogenides show that they have great promise
as thin-film PVs and exhibit good performance.
In addition to the eight outstanding candidates for thin-film

PVs, the proposed method screens out 12 other I2-II-IV-X4
chalcogenide semiconductors that are far away from the range
of 0.9–1.6 eV (the corresponding band structures and DOSs are
provided in Supplementary Figs. 8–23), which are also likely to
play important roles in PV devices, even in other fields
(photocatalysis, sensors, detectors, etc.). There are many sug-
gested improvements to properly adjust their band gaps or
optical properties to achieve superior performance.
Our UL model not only overcomes the problem of data scarcity,

but also greatly shortens the cycle of I2-II-IV-X4 chalcogenide
discovery, positively differing high-throughput calculations by
previous works49,50. In this work, 27 known structures were
excluded from the initial 1520 I2-II-IV-X4 chalcogenides, and 26
candidates were finally screened out. In terms of computational
screening, each structure required 260,464 s on a 24-CPU super-
computer (Supplementary Fig. 25) through the high-precision
HSE06 method, meaning that the present work saves ~12.1-year
computational cycles for 1467 structures. This will provide
research export and method for the next generation of thin-film
PVs. In addition, structural features also have an important impact
on the band gap prediction51, but we did not consider them in the
clustering due to the lack of data. With the further development of
high-throughput computing, more and more I2-II-IV-X4 materials
will be available, at which point we will be able to establish
supervised learning models to accurately predict band gaps using
classification or regression methods.

Thermodynamic stabilities of eight I2-II-IV-X4 chalcogenides
For the eight I2-II-IV-X4 chalcogenides with good electro-optical
properties, their thermodynamic stability should be evaluated in
addition to the preliminary stability determined by UL and
geometric structure optimization in order to facilitate their
practical application. Therefore, we performed AIMD to evaluate
the thermodynamic stabilities of the screened I2-II-IV-X4 candi-
dates. As shown in Fig. 7 and Supplementary Fig. 26, the total
energies of all the systems fluctuate within a very small range
without a clear drop or rise during the simulations at 300 K. The
crystal structure snapshots were extracted by an interval of 1.0 ps,
without obvious expansion or contraction. Moreover, formation
enthalpy is an important criterion to test crystal stability34,52, thus
we also calculated the formation enthalpies for eight I2-II-IV-X4
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candidates with two host space groups of I222 and P31. As shown
in Supplementary Fig. 27, all structures with a space group of I222
show the lower formation enthalpies than the structures with
space group of P31, especially seven structures with I= Ag+ show
the lower formation enthalpies than experimental Ag2BaSnS4,
indicating their good stability. It is noting that the selected
Cu2BaMnSe4 with a space group of P31 has a slightly higher
formation enthalpy than Cu2BaMnSe4 with a space group of I222
and experimental Cu2BaSnS4, which may be metastable since the
small difference in formation enthalpy and its smooth energy
fluctuations during AIMD. The individual energy values (isolated
atoms and bulk structures) are provided in Supplementary Table 6.

The above results indicate that the eight I2-II-IV-X4 chalcogenides
can maintain the integrity of their crystal structures and good
thermal stabilities at room temperature. This indicates that the
eight structures selected in this work are stable. We expect that
they can be further widely applied in thin-film PVs with good
performance.

DISCUSSION
I2-II-IV-X4 chalcogenides have become important materials for
thin-film PVs. The discovered I2-II-IV-X4 chalcogenides meet the
criteria for earth-abundance and environmental friendliness, and

Fig. 5 Four I2-II-IV-X4 chalcogenides with Eg in the range of 0.9–1.6 eV, predicted by HSE06 calculations. The optimized crystal structures,
band structures and density of states of Ag2BaTiS4, Ag2BaTiSe4, Ag2BaSiSe4, and Ag2BaZrSe4 are shown in a–c Ag2BaTiS4, d–f Ag2BaTiSe4,
g–i Ag2BaSiSe4, J–l Ag2BaZrSe4. In the band structures, the red dots present CBMs, while the blue dots present VBMs. The electronic structures
of the other four I2-II-IV-X4 chalcogenides are provided in Supplementary Figs. 13, 20, 21, and 23.
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demonstrate great potential for improving PV performance.
However, traditional approaches, such as experimental synthesis
and high-throughput computing, are limited due to the long-time
cycle, and even the reliable ML model is impeded by the scarcity
of material property data.
In summary, our achievements are as follows: (1) We propose an

accessible descriptor of SDEPs based on the isolated elemental
properties to obtain the feature vector of I2-II-IV-X4 compounds,
which can be expanded to other material systems. (2) eight I2-II-IV-
X4 compounds (Ag2BaTiS4, Ag2BaTiSe4, Ag2BaCrS4, Ag2BaSiSe4,
Ag2BaZrS4, Ag2BaZrSe4, Ag2BaHfSe4, and Cu2BaMnSe4) with
optimal band gaps, desired optical absorptions, and practical
thermal stabilities at room temperatures were selected out of
2700 original structures by UL. They demonstrate great potential
as thin-film PVs. (3) Because each structure requires an average of
260,464 s with a 24-CPU supercomputer, our method significantly
reduced the scope for screening and calculation (from 2700 struc-
tures to 1520 structures, to 26 structures), dramatically shortening
the computational cycle of material discovery by ~12.1 years. (4)
This study demonstrates the potential of UL in material discovery,
thus surmounting the obstacle of data scarcity, which may lead to
important ideas and methods for the future discovery of materials.
Furthermore, we hope that the eight candidates revealed in this

work will be synthesized experimentally for the preparation and
application of thin-film PVs. For the other 16 I2-II-IV-X4 semi-
conductors identified, they are also of high research value in
different fields according to their band gaps. In our subsequent
work, we will focus on finding better descriptors to explore more
precise quantitative laws of I2-II-IV-X4 structures, such as the
expanded Shannon radii, cell volume33. Meanwhile, this work is a
typical case of UL in material discovery, we look forward to its
vigorous development in materials science.

METHODS
Tolerance factor
Tolerance factors serve as descriptors for phase stability with quaternary I2-
II-IV-X4 semiconductors, which can be used for structure prediction in an
empirically driven learning model16. For I2-II-IV-X4 materials, two dimen-
sionless tolerance factors (TI and TIV) describing the geometric relations
have been derived recently. The formula is as follows,

TI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ ffiffiffi

2
p

3

s

rI þ rX
rII þ rX

(1)

TIV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ ffiffiffi

2
p

3

s

rIV þ rX
rII þ rX

(2)

where rI, rII, rIV, and rX are the ionic radii of the I, II, IV, and X elements,
respectively, and ideally TI= TIV= 1.0. Sun et al. calculated the tolerance
factors using ionic radii, where the ranges of TI and TIV are 1.0 to 1.22 and
0.84 to 1.04. Therefore, in this work, we initially set tolerance factors
ranging from 0.84 to 1.22. After calculating the 675 compounds, the ranges
of TI and TIV are 0.94 to 1.48 and 0.84 to 1.11, respectively. Thus, in the
further UL, we set TI ranges from 0.94 to 1.22 (the red dashed line in Fig.
2a), and TIV ranges from 0.84 to 1.11 (the blue dashed line in Fig. 2a).

Descriptor of SDEPs
According to our previous work and relevant literature reports21,41–43, we
built descriptors from properties of isolated atoms at the I-, II-, IV-, and
X-sites. The nine properties of atomic number (Z), group number (g),
covalent radius (Rcov), Van der Waals radius (Rvdw), valence-electron
number (Nv), electron affinity (Eea), dipole polarizability (Dp), first ionization
energy (Eie), and Pauling electronegativity (X) are considered in this work.
For each elemental property (φ), we calculated the minima and maxima of
the absolute values of the sums and differences of elemental properties
(SDEPs). Succinctly, we introduce the following notations for an elemental

Fig. 6 Calculated optical absorption coefficients of four I2-II-IV-X4 chalcogenides. a Ag2BaTiS4, b Ag2BaTiSe4, c Ag2BaSiSe4, d Ag2BaZrSe4.
E || a parallel to reciprocal a axis, E || b parallel to reciprocal b axis, and E || c parallel to the reciprocal c axis. The optical absorption coefficients
of the other four I2-II-IV-X4 chalcogenides are provided in Supplementary Fig. 24.
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property φ:

Δmin±
φ ¼ min φI ±φIIj j; φI ±φIVj j; φII ±φIVj jð Þ (3)

Δmax ±
φ ¼ max φI ±φIIj j; φI ±φIVj j; φII ±φIVj jð Þ (4)

∇min±
φ ¼ min φI ±φXj j; φII ±φXj j; φIV ±φXj jð Þ (5)

∇max ±
φ ¼ max φI ±φXj j; φII ±φXj j; φIV ±φXj jð Þ (6)

For each of these equations, we can calculate an 18-dimensional vector
based on nine properties. Therefore, a 72-dimensional feature vector can
be obtained for each I2-II-IV-X4 compound (as shown in Fig. 2b,
Supplementary Fig. 4, and Supplementary Table 3). Compared with the
36-dimensional feature vectors obtained from the previous nine indepen-
dent elemental properties (four site elements), the 72-dimensional feature
vectors contain more abundant information, especially the information of
differences between elemental properties.

Unsupervised algorithm
UL is accomplished by performing AHC, and the dendrogram function
used in AHC is from the SciPy package35. In AHC, the similarity between
samples is calculated by a similarity measure, and each sample is
reconnected step by step in order to form nodes. The nodes are organized
into a bottom-up tree diagram hierarchy (dendrogram), where the leaf
nodes of the tree represent a single sample, and non-leaf nodes are

generally obtained by merging similar or close sample sets. The Euclidean
distance (L2) between two I2-II-IV-X4 compounds was used as the similarity
metric, and Ward linkage was used to measure group dissimilarity.
The advantage of AHC is that the partition can be stopped at any time,

which means that the number of groups (K) can be adjusted dynamically
and directly. In this study, K= 10 performs well. More details regarding K
can be found in Supplementary Fig. 5 and Supplementary Note 2.

First-principles calculation
All first-principles calculations were conducted using the Vienna Ab initio
Simulation Package (VASP)53. The Perdew–Burke–Ernzarhof (PBE) general-
ized gradient approximation (GGA) functionals54 and project-augmented
wave (PAW) atom potentials are employed to perform geometric structure
optimizations55,56. In this work, for the structures with a space group of
I222, the experimental Ag2BaSnS4 (materials id: mp-555166) served as the
starting structure for the cell optimizations; for the structures with a space
group of P31, the experimental Cu2BaSnS4 (materials id: mp-17954) served
as the starting structure, both of which were obtained from the Materials
Project38. The cutoff energy for the plane-wave basis was set as 500 eV. The
structure optimization process was ended when an energy convergence
lower than 10−5 eV and atomic force less than 0.05 eV/Å. Further, the
HSE06 functional was performed for electronic structure calculations and
optical properties36,37, and the high symmetry points of electrons were
obtained from the online tool of the seek-path. More details on the
calculations are provided in Supplementary Note 4. Further, to see the
effect of lattice constant on the band gap57, we also optimized eight
promising I2-II-IV-X4 materials by using the high-level meta-GGA functional
(strongly constrained and appropriately normed semilocal density func-
tional, SCAN)58,59, then calculated the band gaps with HSE06 functional,
and found that the differences in structures and band gaps are small (see
Supplementary Table 7). This indicates that the convergence criterions
(energy and atomic forces) we calculated are reasonable.
The AIMD process was used to evaluate the thermal stability, for

structure with a space group of I222, a 128-atom 2 × 2 × 2 supercells was
built, and for space group of P31, a 196-atom 2 × 2 × 2 supercell was built.
There are enough atoms for phase transition simulations43,60,61. With a
time step of 1.0 fs, a total of 5 ps of kinetic processes were performed for
the structures. It is noted that a longer time scale or larger system size
would help to build confidence in stability conclusion but that for now,
these cell dimensions will work. During this process, the temperature was
controlled at 300 K using the Nosé–Hoover thermostat62,63.
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